Elsevier

BBA 41291

THE ADP- AND Mg²⁺-REACTIVE CALCIUM COMPLEX OF THE PHOSPHOENZYME IN SKELETAL SARCOPLASMIC RETICULUM Ca²⁺-ATPase *

JUN NAKAMURA

Biological Institute, Faculty of Science, Tohoku University, Sendai, Miyagi 980 (Japan)

(Received October 14th, 1982) (Revised manuscript received February 9th, 1983)

Key words: Ca²⁺-ATPase; Ca²⁺ binding; Enzyme phosphorylation; (Sarcoplasmic reticulum)

The effects of ATP on Ca²⁺ binding in the absence of added Mg²⁺ to the purified sarcoplasmic reticulum Ca²⁺-ATPase were studied at pH 7.0 and 0°C. ATP increased the number of Ca²⁺-binding sites of the enzyme from 2 to 3 mol per mol of phosphorylatable enzyme. The association constant for the ATP-induced Ca²⁺ binding was 4·10⁵ M⁻¹, which was not significantly different from that obtained in the absence of ATP. AdoP[CH₂]PP had little effect on the Ca²⁺-binding process. The amount of phosphoenzyme formed was equivalent to the level of ATP-induced Ca²⁺ binding. ADP decreased the level of ATP-induced Ca²⁺ binding and phosphoenzyme by the same amount. These results suggest that ATP-induced Ca²⁺ binding exists in the form of an ADP-reactive phosphoenzyme·Ca complex. In addition, the Ca²⁺ bound to the enzyme in the presence of ATP was released on the addition of 1 mM MgCl₂; after the release of Ca²⁺, the phosphoenzyme decayed. These observations suggest that Mg²⁺, added after the ATP-induced Ca²⁺-binding process, may replace the Ca²⁺ on the phosphoenzyme and initiate phosphoenzyme decomposition.

Introduction

It is generally accepted that the sarcoplasmic reticulum produces muscle relaxation by removing Ca²⁺ from the contractile apparatus. Calcium transport in isolated sarcoplasmic reticulum membrane vesicles is an active process, dependent upon a membrane-bound Ca²⁺-ATPase [1-4]. The ATPase protein has high-affinity Ca²⁺-binding sites [5-8]. It has been reported that in the absence of ATP, the affinity of the enzyme for Ca²⁺ is

Calcium binding to the sarcoplasmic reticulum Ca²⁺-ATPase has been studied mostly in the presence of Mg²⁺ at millimolar concentration [5,7,8,14]. Very little information is available regarding Ca²⁺ binding in the absence of added Mg²⁺ [14–16]. It was reported, e.g., that in the absence of added Mg²⁺, the substrate ATP did not affect Ca²⁺ binding to phospholipase A-digested microsomal sarcoplasmic reticulum vesicles

Abbreviations: EGTA, ethyleneglycol bis(β -aminoethyl ether)-N,N'-tetraacetic acid; Ado $P[\mathrm{CH}_2]PP$, adenosine 5'-[α,β -methylene]triphosphate.

about 30 000 higher than that for Mg²⁺, whereas, in the presence of ATP the affinity ratio for Ca²⁺ compared to Mg²⁺ is only 2.5 [9]. It has been suggested that Ca²⁺-binding sites required for the phosphorylated enzyme formation are distinct from Mg²⁺-binding site(s) required for the phosphoenzyme decomposition [10–12]. In fact, Yamada and Ikemoto [13] have suggested that the substrate acceptor site for Ca²⁺ derived from Ca ATP is separate from the Ca²⁺-transport sites.

^{*} This paper, based on studies carried out at Tohoku University, was written in the Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH, U.S.A.

[14]. By the use of ⁴⁵Ca, however, we observed that in the absence of added Mg²⁺, ATP induced an increase in the amount of 45 Ca2+ which was bound to a purified Ca²⁺-ATPase and the ⁴⁵Ca²⁺ was released on the addition of 1 mM MgCl₂ [15]. Recently, Dupont [16] also observed ATP-induced ⁴⁵Ca²⁺ incorporation into microsomal sarcoplasmic reticulum and reported that the incorporated 45Ca2+ was released by EDTA, which brought about a change in the phosphoenzyme reactivity toward ADP. Since the sarcoplasmic reticulum may contain intrinsic Ca2+ which is inaccessible to Ca²⁺ chelators [17-19], it is uncertain whether the increased ⁴⁵Ca²⁺ in our and Dupont's reports is due to an actual increase in Ca2+ binding or is a result of substitution or exchange of ⁴⁵Ca²⁺ for the intrinsic Ca²⁺. To answer this question, we studied ATP-induced Ca2+ binding to a purified Ca2+-ATPase in the absence of added Mg²⁺ by ⁴⁵Ca²⁺ and by atomic abosrption spectrophotometry. We report that either in the presence or in the absence of ATP, the enzyme binds Ca²⁺, but the substitution or exchange of external Ca²⁺ for intrinsic Ca²⁺ is negligible. Also, in the absence of Mg²⁺, ATP induces an increase in the number of Ca²⁺-binding sites on the enzyme and the bound Ca2+ is in the form of an ADP-reactive phosphoenzyme · Ca complex and is replaceable by Mg^{2+} .

Materials and Methods

Chemicals

Chemicals used in this work were of analytical grade. Creatine kinase and AdoP[CH₂]PP were obtained from Sigma Chemical Co. ⁴⁵CaCl₂, [¹⁴C]ATP, and [³²P]ATP were purchased from the Radiochemical Centre, Amersham. Deoxycholate was purified by the method of McLennan [20].

Purification of Ca2+-ATPase

Sarcoplasmic reticulum was isolated from rabbit skeletal muscle by the method of Weber et al. [21] with some modification [17]. Ca²⁺-ATPase of the sarcoplasmic reticulum was purified by the following two procedures.

Deoxycholate-solubilized Ca^{2+} -ATPase. Sarcoplasmic reticulum was solubilized with sodium deoxycholate (deoxycholate/protein = 1:3, w/w) in

a 20 mM Tris-HCl buffer (pH 8.0) solution containing 0.5 M KCl, 0.3 M sucrose, 10 µM CaCl, and 0.1% β -mercaptoethanol at 0°C for 10 min. Insoluble materials were removed by centrifugation at $165\,000 \times g$ for 60 min. The supernatant was placed on a Sephadex G-100 column equilibrated with a solution containing 0.5 M KCl, 10 μ M CaCl, and 0.1% β -mercaptoethanol. The fractions eluted immediately at the void volume were pooled and then sedimented at $53000 \times g$ for 60 min. The pellet was suspended in a buffer solution containing 0.5 M KCl, 0.3 M sucrose and 10 µM CaCl₂, and was sedimented again at $53\,000 \times g$ for 60 min. The resultant pellet was resuspended in a 20 mM Tris-maleate buffer (pH 7.0) containing 0.5 M KCl and 0.3 M sucrose. The suspension was used as the deoxycholate-solubilized Ca2+-ATPase.

Deoxycholate-extracted Ca^{2+} -ATPase. Sarcoplasmic reticulum vesicles were partially solubilized by sodium deoxycholate (deoxycholate/protein = 1:4, w/w) in the same solubilization buffer as described above. The suspension was centrifuged at $40\,000 \times g$ for 60 min. The pellet was washed to remove detergent, resuspended in a 20 mM Tris-HCl buffer (pH 8.0) containing 0.5 M KCl, 0.3 M sucrose and $10~\mu$ M CaCl₂, and centrifuged at $40\,000 \times g$ for 60 min. After one additional centrifugation in fresh buffer, the resultant pellet was resuspended in a 20 mM Trismaleate buffer (pH 7.0) solution containing 0.5 M KCl and 0.3 M sucrose. The suspension was used as deoxycholate-extracted Ca^{2+} -ATPase.

The deoxycholate-solubilized or deoxycholateextracted Ca2+-ATPase was precipitable by centrifugation and does not filter through a Millipore filter of 0.45 μ m pore size, indicating the possibility that these enzymes are still membrane bound. The two preparations did not accumulate Ca²⁺ in the presence of potassium oxalate (Table I), and their SDS gel electrophoretic patterns were identical (Fig. 1). The 115 kDa Ca²⁺-ATPase [22] was 93% and the 55 kDa high-affinity, Ca²⁺-binding protein [23] 3.4% of the total protein. Calsequestrin (44 kDa) [24,25] was not detected. The purified Ca²⁺-ATPases (10-25 mg protein/ml) were stored at 0°C and used within 2 days after purification. These preparations were 'contaminated' by 0.5-2.0 nmol Mg²⁺/mg protein. In the procedures for purification, washing

TABLE I

ATP-INITIATED Ca^{2+} UPTAKE BY SARCOPLASMIC RETICULUM, DEOXYCHOLATE-EXTRACTED AND DE-OXYCHOLATE-SOLUBILIZED Ca^{2+} -ATPase

 Ca^{2+} uptake was assayed at 24°C in a 20 mM Tris-maleate buffer solution (pH 6.8) containing 0.12 M KCl, 25-40 μ M CaCl₂, 1 mM MgCl₂, 5 mM potassium oxalate, 1 mM ATP and 0.01-1.03 mg protein/ml of sarcoplasmic reticulum, deoxycholate-extracted and deoxycholate-solubilized Ca^{2+} -ATPase. The reaction was terminated by filtration through a Millipore filter in the case of sarcoplasmic reticulum and through a glass filter in the case of deoxycholate-extracted or deoxycholate-solubilized Ca^{2+} -ATPase. The amount of Ca^{2+} uptake was calculated from the total radioactivity in the whole mixture minus the radioactivity in the filtrate. The ATP-initiated Ca^{2+} uptake is presented as the difference between the amount of Ca^{2+} uptake in the presence and absence of ATP. Results are expressed as nmol/mg per min.

	Sarcoplasmic reticulum	Deoxycholate- extracted Ca ²⁺ -ATPase	Deoxycholate- solubilized Ca ²⁺ -ATPase	
In complete system (reaction time 3 min)	829.0	2.9	1.0	
- oxalate (reaction time 1 min)	78.0	-1.5	-1.4	

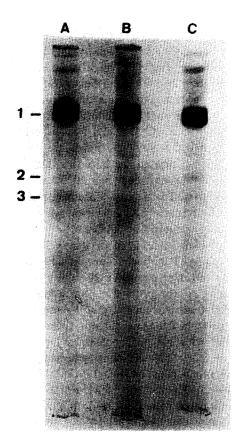


Fig. 1. SDS-polyacrylamide gel electrophoretic profiles of sarcoplasmic reticulum (A), deoxycholate-solubilized Ca²⁺-ATPase (B) and deoxycholate-extracted Ca²⁺-ATPase (C) showing: Ca²⁺-ATPase (1), high-affinity Ca²⁺-binding protein (2) and calsequestrin (3).

the enzyme with $CaCl_2$ at higher than 10 μM decreased the Mg^{2+} contamination to below 0.5 nmol/mg protein, but the enzyme aggregated when this high $CaCl_2$ was present.

Assays

Ca2+ binding. Unless otherwise indicated the Ca²⁺-binding reaction was carried out at 0°C in 1 or 2 ml of 20 mM Tris-maleate buffer solution (pH 7.0) containing 0.12 M KCl, 1 mM creatine phosphate, 0.3 mg/ml creatine kinase, 1.02-2.50 mg/ml Ca²⁺-ATPase and various concentrations of 45 CaCl₂ and EGTA with or without ATP. The reaction mixture in the absence of added Mg2+ was contaminated with 10-15 μM Mg²⁺, as measured by atomic absorption spectrometry. Most of the contaminating Mg²⁺ originated in creatine kinase used in the ATP-regenerating system. The Mg²⁺ at concentrations less than 100 μM does not affect the Ca2+ binding to the enzyme in the presence of ATP (see Fig. 6). The Ca²⁺-binding reaction was initiated by adding ATP. The Ca²⁺bound proteins of the Ca2+-ATPase or phosphoenzymes were separated by a glass filter, Millipore filter, or the centrifugation procedure described below.

Glass filter procedure. The membrane-bound proteins were removed by filtration with two layers of a Whatmann glass filter (0.7 μ m pore size, GF/F). The radioactivity of ⁴⁵Ca in both the original reaction mixture and the filtrate was mea-

sured; the difference determined the amount of ⁴⁵Ca²⁺ which was bound to the enzyme.

Millipore filter procedure. A Millipore filter (0.45 μ m pore size, HA) was used. The filter was washed once with 2 ml of 20 mM Tris-maleate (pH 7.0) containing 0.12 M of KCl and various concentrations of ⁴⁵CaCl₂ before it was used for filtering 0.2 ml of the reaction mixture. The Ca2+-bound proteins on the filter were washed a few times within 1 min to remove ATP, creatine kinase and creatine phosphate. For each washing 2 ml of the washing solution were used. After the washing, the enzyme retained on the filter was washed with 2 ml of the washing solution containing ADP or Mg2+. The amount of Ca2+ binding was calculated from the radioactivity of the enzyme-retaining filter subtracted from the radioactivity of the enzyme-free filter.

Centrifugation. The Ca²⁺-binding reaction was carried out in a centrifuge tube for 15 min. After the reaction, the membrane-bound proteins were separated from 2 to 4 ml of reaction medium by centrifugation at $0-5^{\circ}$ C and $109\,000 \times g$ for 60 min. The Ca²⁺ concentrations in the original mixture and the supernatant were both measured by an atomic absorption spectroscopy method as described previously [17] and by a 45 Ca²⁺ method; the difference determined the amount of Ca²⁺ which was bound to the enzyme.

In the above three procedures, the centrifugation procedure gave the lowest blank values and the most precise Ca²⁺-binding values. The Millipore filtration procedure gave results with large variations. The glass filtration procedure gave high blank values.

Residual ATP. ATP which remained on the enzyme was assayed by measuring [14C]ATP which remained on the enzyme using the Millipore filtration method as described for the Ca²⁺-binding assay. The amount of remaining ATP was calculated from the radioactivity of the enzyme-retaining filter subtracted from the radioactivity of the enzyme-free filter which was prewashed with blank solution containing [14C]ATP.

Phosphoenzyme. The phosphorylation reaction was carried out in the same solution as that for the Ca²⁺ binding, and the assay of ³²P-labeled phosphoenzyme was carried out by the Millipore filtration method. Creatine phosphate and creatine

kinase were omitted. The concentration of the contaminated Mg²⁺ in the reaction mixture was 0.5–2.0 μ M. The reaction was terminated by washing the filter with 2 ml of ice-cold 5% trichloroacetic acid. The filter was washed four times with 2 ml of 5% trichloroacetic acid containing 0.1 mM ATP and 0.1 mM P_i. The amount of ³²P-labeled phosphoenzyme was calculated from the radioactivity of the phosphoenzyme-retaining filter, and that of [³²P]ATP was calculated from the radioactivity of the filtrate which contained [³²P]ATP extracted by the method of Martin and Doty [26]. The total amount of phosphorylatable enzyme was the maximum phosphoenzyme obtained in 0.1 mM CaCl₂, 0.1 mM ATP and 5 mM MgCl₂.

SDS-polyacrylamide gel electrophoresis. SDS-polyacrylamide gel electrophoresis was carried out using 7.5% acrylamide gel according to the method of Weber and Osborn [27]. Gels were stained with Coomassie blue. Protein concentration was determined by the procedures of Lowry et al. [28] using bovine serum albumin as the standard.

Results

The amounts of Ca²⁺ binding to Ca²⁺-ATPase determined by atomic absorption spectroscopy and by ⁴⁵Ca²⁺ methods are summarized in Table II. Both methods gave similar results. Calcium binding was the highest when the reaction was carried out in the presence of ATP and absence of Mg²⁺. In the presence of Mg²⁺ or the absence of ATP with or without Mg²⁺, Ca²⁺ binding was reduced 30%.

The time course of Ca²⁺ binding to the enzyme is shown in Fig. 2. ATP increased the amount of Ca²⁺ binding from 13.2 to 18.1 nmol/mg protein in 10 s, and most of the bound Ca²⁺ increased by ATP was released by 1 mM MgCl₂ within 10 s. When ATP was not regenerated during the reaction, the amount of ATP-induced Ca²⁺ binding was diminished within 30-60 s after the addition of ATP.

The association constants of Ca²⁺-ATPase for Ca²⁺ in both the presence and absence of ATP without added Mg²⁺ were not significantly different as determined by Scatchard analysis (Fig. 3); ATP increased the number of Ca²⁺-binding sites from 10.2 to 15.6 nmol/mg protein.

TABLE II THE Ca^{2+} BINDING ASSAYED BY ATOMIC ABSORPTION SPECTROSCOPY AND ^{45}Ca METHODS

Reaction conditions: Ca^{2+} -ATPase (deoxycholate-solubilized), 2.5 mg/ml; $CaCl_2$, 46 μ M; ATP, 100 μ M. The centrifugation procedure was used for these experiments. The bound Ca^{2+} was measured from the total concentration of Ca^{2+} in the original reaction mixture minus that in the supernatant.

Method	Bound Ca ²⁺ (nmol/mg protein)			
	-ATP		+ ATP	
	- Mg	+ Mg	- Mg	+ Mg
Atomic absorption, mean \pm S.E. $(n = 4)$	10.8 ± 0.8	10.8 ± 2.0	15.2 ± 0.8	11.2 ± 0.6
⁴⁵ Ca	9.7 a	9.4 ^a	13.7 a	9.8 a
	9.2 b	8.9 ^b	14.1 ^b	8.7 ^b
	9.0 b	9.3 b	13.5 b	8.5 b

^a Assayed under the same condition as that in atomic absorption.

Ado $P[CH_2]PP$ at 10 μ M did not increase the amount of Ca²⁺ binding; whereas, ATP did increase the binding from 12.2 to a maximum level of 17.5 nmol/mg protein (Fig. 4). In some of the Ca²⁺-ATPase preparations, ATP-induced Ca²⁺ binding was not observed at concentrations of ATP higher than 1 mM. The steady-state level of

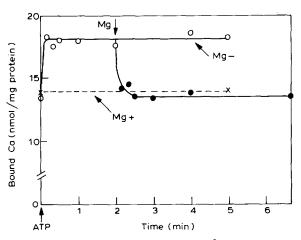


Fig. 2. The time courses of ATP-initiated Ca^{2+} binding in the presence (×---×) and absence (\bigcirc — \bigcirc) of 1 mM Mg²⁺. Mg \downarrow indicates the addition of 1 mM Mg²⁺ to the Ca^{2+} -binding reaction mixture which is originally without added Mg²⁺. Following the addition of Mg²⁺, the Ca^{2+} binding decreases (\bullet — \bullet). Other conditions were: Ca^{2+} -ATPase (deoxycholate-extracted), 1.02 mg/ml; ATP, 50 μ M; $CaCl_2$, 20 μ M. The glass filtration procedure was used for these experiments.

Ca²⁺ binding dependent upon ATP was 5.3 nmol/mg protein. During the course of the reaction, acid-precipitable phosphoenzyme is formed.

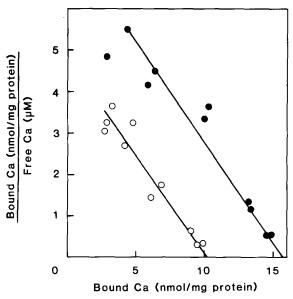


Fig. 3. Scatchard plots of Ca^{2+} binding in the absence of added Mg²⁺. (•••••) In the presence of 50 μ M ATP, (O•••••) in the absence of ATP. The various Ca^{2+} concentrations were adjusted by mixing 44 μ M Ca^{2+} with 0–100 μ M EGTA, the association constant for EGTA-Ca being 1.3· 10^{-6} M⁻¹. The concentration of Ca^{2+} -ATPase (deoxycholate-extracted) was 1.06 mg/ml. The centrifugation procedure was used for these experiments. Ca^{2+} -ATPase used here had a maximum phosphoenzyme level of 4.6 nmol/mg protein.

^b Assayed by using 1.3 mg/ml Ca²⁺-ATPase, 37 μ M CaCl₂ and 100 μ M ATP.

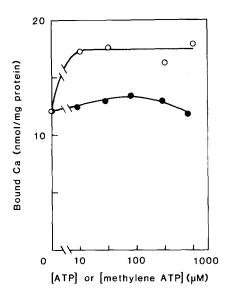


Fig. 4. Effects of ATP (\bigcirc — \bigcirc) and Ado $P[CH_2]PP$ (methylene ATP) (\bullet — \bullet) on the Ca²⁺ binding in the absence of added Mg²⁺. Reaction conditions: Ca²⁺-ATPase (deoxycholate-extracted), 1.04 mg/ml; CaCl₂, 38 μ M. The reaction time was 4 min. The glass filtration procedure was used for these experiments.

After exhaustive washing (up to eight times) of the preparation to remove excess ATP which remained on the enzyme, the phosphoenzyme was measured at a constant level of 3.9 ± 0.1 , and the Ca²⁺ apparently bound to the phosphoenzyme remains

at 5.0 ± 0.6 nmol/mg protein (Fig. 5).

The effects of ADP on ATP-induced Ca2+ binding and phosphoenzyme level are summarized in Table III. ADP lowered both the amount of ATPinduced Ca2+ binding and the amount of phosphoenzyme formed, in contrast to Ca²⁺ binding that occurred in the absence of ATP which was only slightly affected by ADP. The amount of ATP-induced Ca²⁺ binding was decreased from 4.4 to 0.5 nmol/mg protein by increasing the concentration of ADP from 0 to 100 µM. The amount of phosphoenzyme was also decreased from 3.5 to 0.2 nmol/mg protein by increasing the concentration of ADP from 0 to 100 µM. About 97% of ³²P in the ³²P-labeled phosphoenzyme was recovered as [32P]ATP. The ratio of the amount of the ATP-induced Ca2+ binding to that of phosphoenzyme that was decreased by ADP was 0.8 - 1.2.

The Ca²⁺ that was bound to the enzyme could be increased by ATP only at lower than $100 \mu M$ Mg²⁺. However, Mg²⁺ at concentrations higher than $100 \mu M$ reduced the ATP-induced Ca²⁺ binding, and no ATP-induced Ca²⁺ binding was observed when Mg²⁺ concentration was higher than 1 mM (Fig. 6). Furthermore, the bound Ca²⁺ which was increased by ATP could be released by 1 mM (Table IV and Fig. 2). However, the amount of phosphoenzyme that was decreased by Mg²⁺ was relatively small, only from 3.3 to 2.9 nmol/mg

TABLE III THE EFFECTS OF ADP ON ATP-INDUCED Ca^{2+} BINDING AND PHOSPHOENZYME LEVEL

Reaction conditions: Ca^{2+} -ATPase (deoxycholate-extracted), 1.0 mg/ml; $CaCl_2$, 12 μ M; ATP, 50 μ M. The Millipore filter procedure was used for these experiments. After the fourth washing of the enzyme retained on the filter with washing solution containing 14 μ M $CaCl_2$, ATP which remained on the enzyme was 0.03 nmol/mg protein. Then, the enzyme was chased three times with the washing solution containing 14 μ M $CaCl_2$ and the indicated concentrations of ADP. The triple chasings were done within 20 s. The amount of ATP-induced Ca^{2+} binding is presented as the difference between that of Ca^{2+} binding with ATP and that without ATP. ΔCa and Δ phosphoenzyme are the amounts of ATP-induced Ca^{2+} binding and phosphoenzyme which are reduced by ADP.

[ADP] (μM)	Ca ²⁺ binding without ATP (nmol/mg protein)	ATP-induced Ca ²⁺ binding (nmol/mg protein)	Phosphoenzyme (nmol/mg protein)	$\Delta Ca/\Delta$ phosphoenzyme	
0	11.1	4.0	3.1		
1	9.8	1.9	0.5	0.8	
5	9.3	1.9	0.5	0.8	
10	10.2	1.2	0.3	1.0	
50	9.5	0.9	0.2	1.1	
100	8.4	0.5	0.2	1.2	

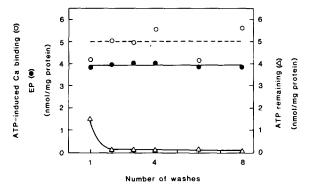


Fig. 5. Levels of ATP-induced Ca^{2+} binding (O-----O), phosphoenzyme (EP) (\bullet —— \bullet) and the remaining ATP (Δ —— Δ) in the absence of added Mg²⁺ with respect to washing. Reaction conditions: Ca^{2+} -ATPase (deoxycholate-extracted), 1.3 mg/ml; $CaCl_2$, 19.2 μ M; ATP, 50 μ M. The reaction time was 5 min. The Millipore filtration procedure was used for these experiments. Washings were done within 1 min with washing solution containing 24 μ M CaCl₂.

protein (Table IV); most of the phosphoenzyme was decomposed by Mg²⁺ only when the reaction time was increased. Mg²⁺ at a concentration of 1 mM did not affect the Ca²⁺ that was bound to the enzyme in the absence of ATP (Table II and Fig. 6), and, even at 10 mM Mg²⁺, Ca²⁺ binding was decreased only 5-20% (data not shown). The Mg²⁺ sensitivity of the ATP-induced Ca²⁺ binding

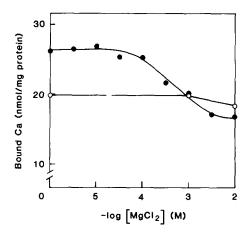


Fig. 6. The Mg²⁺ dependency of Ca²⁺ binding in the presence (• • • • •) and absence (• • • •) of ATP. Reaction conditions: Ca²⁺-ATPase (deoxycholate-solubilized), 1.5 mg/ml; CaCl₂, 28 μM; ATP, 20 μM. The reaction time was 4 min. The glass filtration procedure was used for these experiments.

TABLE IV

THE EFFECT OF Mg^{2+} ON ATP-INDUCED Ca^{2+} BIND-ING AND PHOSPHOENZYME LEVEL

Reaction conditions: Ca^{2+} -ATPase (deoxycholate-extracted), 1.12 mg/ml; $CaCl_2$, 28 μ M; ATP, 50 μ M. The Millipore filtration procedure was used for these experiments. The enzyme retained on the filter was washed once with a washing solution containing 22 μ M $CaCl_2$ to reduce the concentration of the remaining ATP. The washed enzyme was chased one to three times with a solution containing 1 mM MgCl₂ and 22 μ M $CaCl_2$. Each chasing was carried out for 5–8 s. Results are expressed as nmol/mg protein.

	Times of chase with Mg ²⁺			
•	0	1	2	3
ATP-induced Ca ²⁺ binding	3.6	0.4	- 1.0	-1.4
Phosphoenzyme	3.3	2.9	2.5	2.5
ATP remaining	0.43	0.07	0.06	0.03

declined with the time of storage of the enzyme at -80°C (data not shown).

Discussion

In the present study, the difference between the Ca^{2+} bound to the enzyme in the presence and absence of ATP without addition of Mg^{2+} determined by the 45 Ca method (13.9–9.3 = 4.6 nmol/mg protein; average of three values listed in Table II) is not significantly different from that determined by the atomic absorption method (15.2–10.8 = 4.4 nmol/mg protein), suggesting that the exchange process, even if it takes place, does not contribute significantly to the net ATP-increased Ca^{2+} binding to the enzyme. Calcium binding is, therefore, largely due to external Ca^{2+} .

We have also clearly shown that ATP-induced Ca²⁺ binding to the Ca²⁺-ATPase in the absence of added Mg²⁺ is associated with the formation of phosphorylated enzyme which contributes to the increase in the number of Ca²⁺-binding sites to 5.4 nmol/mg protein, but not to the affinities of the enzyme for the Ca²⁺. Based on a molecular mass of 115 kDa for the Ca²⁺-ATPase [22] and its maximum phosphoenzyme level of 4.6 nmol/mg protein, the results indicate that ATP increased the Ca²⁺-binding sites from 2 to 3 mol Ca²⁺ per mol

phosphorylable enzyme. The formation of phosphoenzyme which increased Ca2+ binding is in accord with the observations of Takisawa and Makinose [29], who attributed the increase in Ca²⁺ binding in a soluble enzyme preparation to the formation of phosphoenzyme · Ca, complex from enzyme · Ca complex. Vale and Carvalho [30] also observed an ATP-induced Ca2+ binding to microsomal sarcoplasmic reticulum vesicles in the presence of 5 mM Mg²⁺. But in this case, because the sarcoplasmic reticulum prepared under these conditions may contain other Ca²⁺-binding proteins [23-25] in addition to the Ca2+-ATPase, and because the amount of Ca²⁺ binding (30 nmol/mg protein) was nearly 6-times as great as the present finding for the purified Ca2+-ATPase in the absence of Mg²⁺, the ATP-induced Ca²⁺ binding to the contaminating proteins in the presence of Mg²⁺ might be present.

The phosphoenzyme formation resulting in the increase in Ca²⁺ binding is further supported by the fact that AdoP[CH₂]PP, despite its higher affinities for the enzyme [31] and Ca²⁺ [32], did not increase the amount of Ca²⁺ binding. Also, on addition of ADP, both the ATP-induced Ca²⁺ binding and phosphoenzyme decreased with a ratio of about 1.

The bound Ca2+ induced by ATP could also be released by 1 mM MgCl₂ prior to phosphoenzyme decomposition by Mg²⁺. This may be a result of an exchange of Mg²⁺ for the Ca²⁺ on the ADP-reactive phosphoenzyme. This Mg²⁺-enhanced Ca²⁺ release does not appear to be due to the release from ADP-unreactive phosphoenzyme (which would have a lower affinity for Ca²⁺ [33]), because the transition of ADP-reactive phosphoenzyme to ADP-unreactive phosphoenzyme is not enhanced by Mg²⁺ [33]. Also, it appears that the Ca²⁺ that can be replaced by Mg2+ may be bound to the substrate acceptor site because the Ca2+ on this site is not specific for Ca²⁺ [13]. On the other hand, the Ca2+ on the transport site is Ca2+ specific [7,13] and cannot be replaced by Mg²⁺. The existence of such a substrate acceptor site has been shown for the divalent cations of the metal-ATP complexes [12,13]. Recently, Nakamura and Tonomura [34] also observed the ATP-induced Ca²⁺ binding attributable to ADP-reactive phosphoenzyme. The Ca2+ binding, however, was not

decreased by Mg^{2+} in contrast to our results. Because of the fact that the enzyme, stored for more than 1 month at -80° C without prefreezing by liquid N_2 , lost the Mg^{2+} sensitivity of the Ca^{2+} binding (data not shown), it is probably that their enzyme, stored at -80° C after freezing by liquid N_2 , also lost the Mg^{2+} sensitivity.

Acknowledgments

I am grateful to Dr. Kazuhiko Konishi for his encouragement and advice during the course of this work. I would like to thank Drs. Takuji Takeuchi, Shimpei Yamada, Arnold Schwartz and Taitzer Wang for reading and correcting the manuscript and for their valuable comments.

References

- 1 Hasselbach, W. and Makinose, M. (1961) Biochem. Z. 336, 518-528
- 2 Ebashi, S. and Lipmann, F. (1962) J. Cell Biol. 14, 389-400
- 3 Hasselbach, W. (1964) in Progress in Biophysics and Molecular Biology (Bupler, J.A.V. and Huxley, H.E., eds.), pp. 167-222, Pergamon Press, London
- 4 Ebashi, S. and Endo, M. (1968) in Progress in Biophysics and Molecular Biology (Bupler, J.A.V. and Huxley, H.E., eds.), pp. 123-183, Pergamon Press, London
- 5 Kanazawa, T., Yamada, S., Yamamoto, T. and Tonomura, Y. (1971) J. Biochem. (Tokyo) 70, 95-123
- 6 Chevallier, J. and Butow, R.A. (1971) Biochemistry 10, 2733-2737
- 7 Meissner, G. (1973) Biochim. Biophys. Acta 298, 906-926
- 8 Ikemoto, N. (1975) J. Biol. Chem. 250, 7219-7224
- 9 Yamada, S. and Tonomura, Y. (1972) J. Biochem. (Tokyo) 72, 417-425
- 10 Garrahan, P.J., Rega, A.F. and Alonso, G.L. (1976) Biochim. Biophys. Acta 448, 121-132
- 11 Chiesi, M. and Inesi, G. (1981) Arch. Biochem. Biophys. 208, 586-592
- 12 Makinose, M. and Boll, W. (1979) in Cation Flux Across Biomembranes (Mukohata, Y. and Packer, L., eds.), pp. 89-100, Academic Press, New York
- 13 Yamada, S. and Ikemoto, N. (1980) J. Biol. Chem. 255, 3108-3119
- 14 Fiehn, W. and Migala, A. (1971) Eur. J. Biochem. 20, 245-248
- 15 Nakamura, J. (1979) in Cation Flux Across Biomembranes (Mukohata, Y. and Packer, L., eds.), pp. 125-126, Academic Press, New York
- 16 Dupont, Y. (1980) Eur. J. Biochem. 109, 231-238
- 17 Nakamura, J., Endo, Y. and Konishi, Y. (1977) Biochim. Biophys. Acta 471, 260-272
- 18 Pick, U. and Racker, E. (1979) Biochemistry 18, 108-113
- 19 Diamond, E.M., Norton, K.B., McIntosh, D.B. and Ber-

- man, M.C. (1980) J. Biol. Chem. 255, 11351-11356
- 20 MacLennan, D.H. (1970) J. Biol. Chem. 245, 4508-4518
- 21 Weber, A., Herz, R. and Reiss, L. (1966) Biochem. Z. 345, 329-369
- 22 Le Maire, M., Jorgensen, K.E., Roigaad-Petersen, H. and Moller, J.V. (1976) Biochemistry 15, 5805-5812
- 23 Ostwald, T.J. and MacLennan, D.H. (1974) J. Biol. Chem. 249, 974–979
- 24 MacLennan, D.H. and Wong, P.T.S. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 1231–1235
- 25 Ikemoto, N., Nagy, B., Bhatnagar, G.H. and Gergely, J. (1974) J. Biol. Chem. 249, 2357-2365
- 26 Martin, J.B. and Doty, D.M. (1949) Anal. Chem. 21, 965–967

- 27 Weber, K. and Osborn, M. (1969) J. Biol. Chem. 244, 4406–4412
- 28 Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275
- 29 Takisawa, H. and Makinose, M. (1981) Nature 290, 271-273
- 30 Vale, M.G.P. and Carvalho, A.P. (1981) Biochim. Biophys. Acta 643, 168-176
- 31 Pang, D.C. and Briggs, F.N. (1977) J. Biol. Chem. 252, 3262-3266
- 32 Yount, R.G. (1975) Adv. Enzymol. 43, 1-56
- 33 Takakuwa, Y. and Kanazawa, T. (1979) Biochem. Biophys. Res. Commun. 88, 1209-1216
- 34 Nakamura, Y. and Tonomura, Y. (1982) J. Biochem. (Tokyo) 91, 449–461